3D打印技术在航空领域的应用
欧美已将3D打印技术视为提升航空航天领域水平的关键支撑技术之一。3D打印技术在航空领域的应用主要集中在3类:外形验证、直接产品制造和精密熔模铸造的原型制造等。
(1)国外应用情况
日前,欧洲空间局(ESA)的“以实现高技术金属产品的高效生产与零浪费为目标的增材制造项目”(AMAZE)提出,将首次实现3D打印金属件的大规模生产。这些3D打印的金属零部件可用于喷气式飞机、航天器以及核聚变等项目。
波音公司已经利用三维打印技术制造了大约300种不同的飞机零部件,包括将冷空气导入电子设备的形状复杂导管。目前波音公司和霍尼韦尔正在研究利用3D打印技术打印出机翼等更大型的产品。空客在A380客舱里使用3D打印的行李架,在“台风”战斗机中也使用了3D打印的空调系统。空客公司最近提出?“透明飞机概念”计划,制定了一张“路线图”,从打印飞机的小部件开始,一步一步发展,最终在2050年左右用3D打印机打印出整架飞机。“概念飞机”本身有许多令人眼花缭乱的复杂系统,比如仿生的弯曲机身,能让乘客看到周围蓝天白云的透明机壳等,采用传统制造手段难以实现,3D打印或许是一条捷径。
(2)国内应用情况
中国航天科技集团公司六院7103厂自行研制的某型号软管顺利通过2万次疲劳试验考核,各项指标均达到设计要求。这意味着长期困扰一线职工的软管工艺攻关项目获得成功。这是该厂继去年年底突破大直径高温合金筒体缝焊技术之后,再次突破小直径大壁厚异件缝焊工艺,进一步提升了发动机制造工艺能力。
北京航空航天大学同我国主要飞机设计研究所等单位通过“产学研”紧密合作,瞄准大型飞机、航空发动机等国家重大战略需求,历经17年研究在国际上首次全面突破了钛合金、超高强度钢等难加工大型复杂整体关键构件激光成形工艺、成套装备和应用关键技术,并已在飞机大型构件生产中研发出五代、10余型装备系统,已经受近十年的工程实际应用考验,使我国成为迄今唯一掌握大型整体钛合金关键构件激光成形技术并成功实现装机工程应用的国家。
3D打印技术在医学领域的应用
医学模型快速建造。
医学道具、模型、用品等材料可通过3D?打印获得。利用3D打印技术,可将计算机影像数据信息形成实体结构,用于医学教学和手术模拟。传统医学教学模型制作方法时间长,且搬运过程容易损坏,使用3D?打印技术,可有效减少制作时间,根据需要随时制作,并降低搬运损坏的风险。目前,3D打印医学模型已获得较好的技术支持,具备一定的打印速度,能使用多种材质进行打印,应用程度高,有着很好的应用前景。
组织器官代替品制作。
人体组织器官代替物的材料要求很高,实现难度大。但目前已有一些成功案例,比如复制人体骨骼,制作义肢等。比如,人体某块骨骼缺失或损坏需要置换,首先可扫描对称的骨骼,形成计算机图形并做对称变换,再打印制作出相应骨骼。与传统方法相比,该技术不需要先制作模具,可直接打印,建造速度较快。这项技术可应用于牙种植、骨骼移植等。身体软组织器官制作亦取得进展,报道显示,美国某大学已利用该技术制作出人造耳,与此同时,微型人体肝脏也已被成功制造。德国研究人员利用3D?打印机等相关技术,制作出柔韧的人造血管,并能使血管与人体融合,并同时解决了血管免遭人体排斥的问题。该技术的不断进步和应用的深入将有助于解决当前和今后人造器官短缺所面临的困难。
脸部修饰与美容。
利用3D?打印技术制作脸部损伤组织,如耳、鼻、皮肤等,可以得到与患者精确匹配的相应组织,为患者重新塑造头部完整形象,达到美观效果。首先扫描脸部建立起3D计算机数据,医生可以制作出患者所缺少的部位,重现原来面貌。比起传统技术,该方法更精确,材质选择更加多样化。随着3D打印技术所支持材质的增多,打印质量的精细化,以及美容市场的壮大,脸部修饰与美容应用将有更加广阔的天地,应用水平亦将得到进一步提高。
3D打印技术在金属零件制造领域的应用
金属零件3D?打印技术作为整个3D?打印体系中最为前沿和最有潜力的技术,是先进制造技术的重要发展方向。随着科技发展及推广应用的需求,利用快速成型直接制造金属功能零件成为了快速成型主要的发展方向。目前可用于直接制造金属功能零件的快速成型方法主要有:选区激光熔化(SelectiveLaserMelting,SLM)、电子束选区熔化(Electron Beam Selective Melting,EBSM)、激光近净成形(Laser Engineered Net Shaping ,LENS)等。
国外对金属零件3D?打印技术的理论与工艺研究相对较早,且在近几年已有多家公司推出商品化的设备。而国内的研究主要集中在基础的工艺,华南理工大学的研究重点是SLM?技术,清华大学以EBM技术为主,南京航空航天大学和华中科技大学主要研究选区激光烧结技术,近期也涉及到SLM工艺。西北工业大学深入研究了LENS工艺。
3D打印技术在建筑领域的应用
3D打印建筑技术的基本原理是利用3D打印技术建造房屋,和其他3D打印不同的是,它需要一个巨型的三维挤出机械,并且它挤出的是混凝土,通过与计算机相连接,将设计蓝图变成实物。虽然在概念上设计起来很简单,但实际上实施起来相当复杂,要解决的技术问题非常多。
Enrico Dini发明了世界首台大型建筑3D打印机,这台机器用建筑材料打印出高4米的建筑物。这台打印机的底部有数百个喷嘴,可喷射出镁质黏合物,在黏合物上喷撒沙子可逐渐铸成石质固体,通过一层层地黏合物和沙子结合,最终形成石质建筑物。工作状态下三维打印机沿着水平轴梁和4个垂直柱往返移动,打印机喷头每打印一层时仅形成5mm~10mm的厚度。打印机操作可由电脑CAD制图软件操控,建造完毕后建筑体的质地类似于大理石,比混凝土的强度更高,并且不需要内置铁管进行加固。目前,这种打印机已成功地建造出内曲线、分割体、导管和中空柱等建筑结构。由此不难看出,普通的水泥混凝土可能已经不能适应3D打印建筑技术的需要,混凝土组成材料和搅拌方式均需改变,以适应3D打印建筑技术的需要。
3D打印建筑技术与传统建筑相比,其优势不仅体现在速度快—可比传统建筑技术快10倍以上;不需要使用模板,可以大幅节约成本,并且具有低碳、绿色、环保的特点;不需要数量庞大的建筑工人,大大提高了生产效率;可以非常容易地打印出其他方式很难建造的高成本曲线建筑;可以打印出强度更高、质量更轻的混凝土建筑物;还可能改变建筑业的发展方向,更多地采用装配式建筑。
3D打印技术在文化艺术品领域的应用
3D打印技术在建筑景观设计领域的作用,不只表现在设计阶段,在修改设计、面对客户、市场运营等阶段,3D打印技术也早已渗透至深。在设计阶段,设计师可以通过3D打印技术快速打印出模型,以便在构成和功能上进行设计、推敲。甚至在物理结构方面,模型的作用也是相当重要的。设计师可以利用CAD生成标准的图纸,然后通过3dsMax软件制作出完整的建筑物、道路、公共建筑、植物花卉等一些三维模型,再通过3D打印技术打印出模型。这些模型可以让设计师对整个环境的空间构成、物理结构,甚至是气候预测做出微观的判断和修正,更有利于设计师创作出理性、完善的建筑景观作品。
3D打印技术的发展趋势
美国积层制造技术路线图对未来10~15年内3D打印技术在设计、材料、过程控制、生物医疗、能源和可持续发展方面的发展机会进行了一些阐述,可据此判断出未来10~15年内3D打印技术在这几个方面的发展趋势。
设计工具展现易用性
设计和分析能力是产品开发的核心,3D打印需要广泛开发和运用计算机辅助设计工具。设计方面的趋势包括创建概念设计方法,帮助设计人员采用3D打印技术探索设计空间;生成新的计算机辅助设计系统,克服现有复杂几何形状实体建模和多种材料的局限性;提供多尺度建模和逆向设计方法,以协助掌握复杂的过程-结构-性能之间的关系;创建模型和设计之间的形状-性能-工艺的可变性方法等。