航空航天产业一直以来被视为全球各国综合实力强有力的象征,我国已经在航空航天3D打印领域有了多年的发展历史,在全球占据着领先地位。在3D打印主流应用领域,航空航天也是非常巨大的一个版块。而最近,越来越多的相关案例也逐渐凸显出增材制造在航空领域的诸多优势。
航天科工三院306所增材制造实现新突破
近日,中国航天科工三院306所技术人员成功突破TA15和Ti2AlNb异种钛合金材料梯度过渡复合技术,其采用激光3D打印试制出的具有大温度梯度一体化钛合金结构进气道试验件顺利通过了力热联合试验。
资料图:中国将用3D打印造军用发动机
该技术成功融合了激光3D打印与梯度结构复合制造两种工艺,解决了传统连接方式(如法兰连接、焊接等工艺方法)带来的增重、密封性差和结构件整体强度刚度低等问题,为具有温度梯度结构的开发设计与制造开辟了新的研制途径;同时,开创了一种异种材料间非传统连接的制造模式,实现了结构功能一体化零部件的设计与制造。
3D打印打造长征五号火箭钛合金芯级捆绑支座
近日,中国航天科技集团公司一院211厂利用激光同步送粉3D打印技术成功实现了长征五号火箭钛合金芯级捆绑支座试验件的快速研制,这是激光同步送粉3D打印技术首次在大型主承力部段关键构件上应用。该产品的试制成功对拓展3D打印技术在箭体结构制造领域的应用、丰富大型难加工金属结构件研制技术手段具有重要意义。
据悉,捆绑支座为运载火箭主承力构件,综合力学性能要求高,目前主要采用加工性能较好的高强钢,通过锻造再机加的方式成形。但这一加工方式存在材料去除量大、加工周期长等问题。
面对新型号减重的迫切需求,该厂提出采用具有更高比强度的钛合金材料,利用激光同步送粉3D打印工艺,实现捆绑支座的整体成形。经过系统工艺研究,该厂试制的产品顺利通过了成分、组织性能、表面质量及内部质量等各类检测,整体综合性能达到锻件水平,且较原设计减重30%。激光同步送粉3D打印技术,不仅实现了难加工金属材料的快速成形,同时还为箭体主承力部段的轻量化结构设计与制造,提供了强有力的技术支撑。
“3D打印”航天器Juno成功进入木星轨道
2016年7月5日早上,美国宇航局(NASA)的朱诺(Juno)号探测器在经过了35分钟减速之后,成功完成木星轨道切入(JOI),成为了飞行在木星上空的一颗来自地球的卫星。对于3D打印世界来说,这也是一个重要事件——Juno也是历史上第一个使用了3D打印部件的航天器,它上面一打左右的钛金属波导支架都是由洛克希德·马丁公司使用电子束熔融3D打印技术制造的。
工程师们事先警告说,发动机点火操作并非毫无危险。此前从未有任何飞船如此靠近木星,其高密度辐射带足以摧毁没有做好保护的电子部件。甚至有推算指出,Juno号进入轨道的过程将让其承受相当于100万次齿科X光片拍摄的辐射剂量。据了解,木星拥有太阳系各大行星中最强大的磁场,其强度是地球磁场的2万倍以上(也正是因此木星才能形成永恒的极光),为了对抗木星强大的电磁干扰,Juno号使用了1厘米厚的钛金属遮罩来保护探测器内部电子设备,并采用高离心形的椭圆轨道环绕木星,都是为了在环绕和观测的同时能尽可能远离木星,可是即便如此,Juno号携带的可见光相机和望远镜也将会在绕行木星仅7圈后报废(Juno号计划围绕木星环绕37圈)。
由于探测器本身修建得像台坦克,又有钛金属保护罩,结果为时35分钟的火箭点火制动似乎顺畅地完成。虽然辐射的威胁并未排除,但探测器如今已经可以开展工作,真正揭开木星神秘的面纱了。据悉,Juno号上还携带了三个铝制的乐高人偶像和一块向伽利略致敬的铭牌。分别如下图所示,人像左侧手持望远镜和木星模型的人是伽利略,400多年前正是他首次观察到木星及其4大卫星。右侧是罗马神话中的木星之神朱庇特(Jupiter),在神话中他以雷电为武器,因此人偶右手拿了一把电叉。中间那位就是我们的主角了——朱庇特的妻子朱诺(Juno),她手持放大镜,象征着追求真理。罗马神话中,朱庇特能够拉起云彩遮挡自己,以隐藏自己的行为,而朱诺(Juno)可以看穿云雾,揭露她丈夫的本性。这也是Juno号名字的由来,NASA希望,Juno号能“拨开”木星的厚厚云层,一探其究竟。
NASA成功测试激光3D打印火箭发动机
今年2月份,NASA成功对一台采用多个3D打印复杂部件的火箭发动机进行了测试,该测试采用低温液氢和液氧燃料,产生了2万磅的推力,这也意味着向实现全3D打印的高性能火箭发动机又迈进了一步。
增材制造(或3D打印)技术是提高航天器设计和制造能力的一项关键技术,将在未来太空探索中发挥更大的作用。未来的计划包括对采用液氧和甲烷推进剂的发动机进行测试,这是用于火星登陆器的重要推进剂,因为火星上可能存在甲烷和氧气。重要的是,这些部件与常规的发动机以相同的方式工作,需要承受火箭发动机内极端的温度和压力。涡轮泵的转速可达每分钟90000转(rpm),而最终使推力室产生超过20000磅的推力,像这样的发动机可以为火箭或火星探测器提供所需的推力。
NASA共进行了七项测试,最长的一项持续了10秒。在测试过程中,3D打印的验证机承受了飞行火箭发动机产生推力时所有的极端环境,其中燃料燃烧时温度超过6000华氏度(3315摄氏度),主要用于提供液氢燃料的涡轮泵可承受低于400华氏度(零下240摄氏度)的温度。这些测试使用的是航天飞船推进系统中常见的低温液氢和液氧推进剂。虽然甲烷和氧气被证明是更加适合用于火星探测的推进剂,但采用低温液氢和液氧推进剂能够产生最极端的温度并且使零部件暴露在低温液氢中(这可能会导致脆化),从而能够测试3D部件的极限性能。该团队还计划采用甲烷以及对冷却燃烧室、喷嘴以及涡轮泵等其他关键部件进行测试。
上述这些零部件均采用选择性激光熔融工艺制造,其中,与采用传统的焊接和装配工艺制造的泵相比,3D打印的涡轮泵零部件数量减少了45%,而喷油器则比传统方法制造的减少了200多个零部件,并且其性能也是采用其他方法无法实现。对于阀门等复杂零部件,它的生产周期通常需要一年以上,而采用3D打印技术则可将其缩短至几个月的时间。
NASA开发新一代立方体卫星3D打印推进系统
2014年12月份的时候,相关媒体曾经报道过,Aerojet Rocketdyne成功完成了对MPS-120立方体卫星(CubeSat)上的3D打印肼集成推进系统的点火试验。近日,该公司又一次被美国宇航局(NASA)召唤,开发它的下一代——MPS-130上使用绿色推进剂的模块化推进系统。这一次同样是3D打印的。这份新协议似乎是Aerojet Rocketdyne公司和NASA之间长期合作历史中最新的一部分。Aerojet Rocketdyne公司是世界公认的为航天、导弹和战略系统提供推进和动力系统的领导者,同时在3D打印技术的应用方面也处于领先地位。就在几周前,该公司就与NASA签署了一项金额为16亿美元的合同,为后者3D打印RS-25火箭发动机。而在几个月之前,NASA测试成功的F-1火箭发动机的3D打印部件也是由Aerojet来完成的。事实上,从2013年起,双方在3D打印火箭发动机部件的合作就已经开始了,媒体也对此也曾经进行过多次报道。
在此次交易中,似乎MPS-130立方体卫星的推进系统也将采用与MPS-120同样的方式开发。不过此次的不同之处在于,MPS-130将首次采用绿色推进剂(全名为AF-M315E)。这不仅会改善CubeSat在太空中的能力,而且还提供了一个比传统的肼推进剂更安全、更高效、性能更高的选择。“我们为在推动立方体卫星推进系统的发展方面与NASA建立的伙伴关系而感到兴奋。”Aerojet Rocketdyne公司CEO Eileen Drake称:“毫无疑问它将在私营部门和公共部门中为那些寻求提升微型卫星能力,并且希望能够更经济、有效和安全地操作它们的人们打开一扇新的大门。”根据计划,MPS 130的绿色推进系统将给立方体卫星和微型卫星(nanosats)提供足以媲美大型卫星的动力,但是其尺寸却小得多。这将使其具备更长的任务周期、更大的弹性和更多的机动选项,无论是在较高还是较低的轨道中。复杂的近距离操作和编队飞行也会在这种下一代推进系统中使用。它将同时具备基本的推进能力和3轴控制能力,这也是为那些需要显著的ΔV能力的立方体卫星的客户设计的。关于MPS-130的更多技术细节,请点击此处。
据了解,此次交易也是NASA利用公私合作关系推动引爆点技术计划的一部分,而该计划的目的之一就是将类似3D打印这样的下一代技术推进到商业上可行的境地。作为交易的一部分,Aerojet Rocketdyne公司未来将会交付一个完全集成的带绿色推进器的MPS130系统进行飞行演示,当然还要进行相应的开发和验证测试。
俄罗斯推出碳纤维3D打印机太空制造卫星零部件
根据国外媒体报道,一个俄罗斯研发团队目前正在研发能在国际空间站(ISS)使用的3D打印机。设计人员表示,他们的打印机将使用复合打印材料在太空直接生产电池、天线以及CubeSat立方体纳型卫星所需的技术部件。该项目将结合斯科尔科沃基金会(Skolkovo Foundation)常设公司Sputnix和Anisoprint,以及莫斯科理工大学的研究成果。
Sputnix公司主要进行高科技微卫星组件的开发,并在2014年发射了俄罗斯首个私人地球遥感卫星。Anisoprint主要生产高性能纤维增强塑料。该合作项目旨在克服外太空制造生产过程中遇到的难题,如创伤、尺寸限制以及将新材料发送至轨道等。美国已经在国际空间站开发了一款目前正用于试验项目的3D打印机。在2014年推出的、由NASA和美国太空制造公司(Made by Space)生产的3D打印机使用塑料线材,能打印原型和备用小零件。
在今年4月,NASA安装了另一台由美国太空制造公司生产的增材制造设备(AMF)3D打印机。该AMF 3D打印机也能制造工具并提供维护,并对第三方开放使用,在太空3D打印物体。而该俄罗斯团队计划进行两种材料组合打印,并最终实现小型卫星部件的打印。虽然许多其他3D打印机使用熔融塑料,这款3D打印机结合了热塑塑料与持续加固碳纤维材料。据说这种复合结构比传统的熔融塑料硬度强10倍。设计人员表示这款3D打印机能被用来生产反射器、天线以及太阳能面板。