中国航空发动机集团公司成立大会28日在京举行。中共中央总书记、国家主席、中央军委主席习近平作出重要指示强调,党中央作出组建中国航空发动机集团公司的决策,是从富国强军战略高度出发,对深化国有企业改革、推进航空工业体制改革采取的重大举措。希望你们牢记使命、牢记责任,坚持国家利益至上,坚持军民深度融合发展,坚持实施创新驱动战略,大胆创新,锐意改革,脚踏实地,勇攀高峰,加快实现航空发动机及燃气轮机自主研发和制造生产,为把我国建设成为航空强国而不懈奋斗。
中共中央政治局常委、国务院总理李克强作出批示指出,组建中国航空发动机集团公司,是党中央、国务院作出的重大战略决策。航空发动机是国之重器,是装备制造业的尖端,尽快在这一领域实现突破,对于增强我国经济和国防实力、提升综合国力具有重大意义。要牢固树立新发展理念,坚持军民融合发展战略,以建设世界一流航空发动机企业为目标,依靠改革开放,立足自主创新,弘扬工匠精神,集众智推众创,并积极借鉴国外经验,着力攻克核心关键技术。希望同志们牢记使命,不负重托,努力做航空动力的保障者、制造强国的建设者和创新驱动发展的践行者,为保障国防安全、培育壮大新动能、促进经济社会持续健康发展作出积极贡献。
中国航空发动机集团公司成立大会
作为“现代工业皇冠上的明珠”的航空发动机,是衡量一个国家综合科技水平、科技工业基础实力和综合国力的重要标志,同时也是多种尖端技术融合的试验场,其中激光技术和增材制造在航空发动机领域应用越来越深入。
一、钛合金激光成型技术将用于发动机制造
钛合金具有低密度、高比强度、使用温度范围宽(-269~600℃)、耐蚀、低阻尼和可焊等诸多优点,是航空航天飞行器轻量化和提高综合性能的最佳用材,其应用水平是体现飞行器先进程度的一个重要方面。提高飞行器的综合力学性能并降低成本,是推动钛合金在航空航天领域应用的重要措施。
钛合金激光成型技术将用于发动机制造
自20世纪90年代开始,随着计算机技术的飞速发展,激光直接制造技术逐渐成为制造领域研究的热点。激光直接快速成形技术中有2种方法可以用于直接制造金属零件,即区域选择激光熔化技术和近净成形技术。国外有关大型钛合金结构件激光直接快速成形技术的研究主要集中在美国。
美国AeroMet公司在2002~2005年间实现了激光直接快速成形钛合金结构件在飞机上的应用。2001年Aero- Met公司开始为波音公司F/A-18E/F舰载联合歼击/攻击机小批量试制发动机舱推力拉梁、机翼转动折叠接头、翼梁、带筋壁板等机翼钛合金次承力结构件。2002年制定出了“Ti6Al4V钛合金激光快速成形产品”宇航材料标准(ASM 4999)并于同年在世界上率先实现激光快速成形钛合金次承力结构件在F/A-18 等战机上的验证考核和装机应用。在航天领域,NASA马歇尔航天飞行中心于2012年将选区激光熔化成形技术应用于多个型号航天发动机复杂金属零件样件的制造。激光直接快速成形技术还常常被用于钛合金零件或者模具的修复。
我国钛合金结构件激光直接快速成形技术的研究,从2001年开始一直受到政府主要科技管理部门的高度重视,在飞机、发动机等钛合金结构件激光快速成形制造工艺研究、成套装备研发及工程应用关键技术攻关等方面取得了较大进展。
2016广州国际3D打印展览会是备受工业制造业推崇的年度盛事,将于2016年9月20-22日在广州中国进出口商品交易会展馆隆重举行,点击进行观众预登报名http://t.cn/Rt7n3KQ感受行业盛宴。
北京航空航天大学激光材料加工制造技术实验室以飞机次承力钛合金复杂结构件为对象,开展激光快速成形工程化应用技术研究,先后制造出TA15钛合金角盒近200件,完成了“激光快速成形TA15 钛合金结构件在某型飞机上的装机评审”,首件激光快速成形TA15 钛合金结构件顺利通过在某型飞机上的全部应用试验考核,使我国成为继美国之后世界上第二个掌握飞机钛合金复杂结构件激光快速成形工程化技术并实现激光快速成形钛合金结构件在飞机上应用的国家。
北京航空航天大学王华明主持的“飞机钛合金大型复杂整体构件激光成形技术”项目研制生产出我国飞机装备中迄今尺寸最大、结构最复杂的钛合金等高性能难加工金属关键整体构件,并在我国大型飞机等多型飞机研制和生产中得到实际应用,从而使我国成为目前世界上唯一突破飞机钛合金大型主承力结构件激光快速成形技术并实现装机应用的国家。
相对于国内的航空领域的研究应用,目前激光直接快速成形技术在我国航天领域的应用研究基本上还是处于起步阶段。实际上,航天液体和固体火箭发动机难加工材料、复杂型面的结构件及武器型号难加工材料轻质防热结构件可以很好地采用选区激光熔化技术实现高精度加工。
二、增材制造如何颠覆航空航天制造
近几年来,增材制造在全球范围内迅速走热,各国对于增材制造技术又开始重新重视起来,美国总统奥巴马将其视作制造业回归升级的重要方向,中国也在金属增材制造领域一直处于世界领先水平。随着技术不断的进步,增材制造已经在航空航天、模具以及汽车等领域获得大规模应用,而走在应用前列的当属美国NASA。
据美国国家航空航天局(NASA)官网近日报道,NASA工程人员正通过利用增材制造技术制造首个全尺寸铜合金火箭发动机零件以节约成本,NASA空间技术任务部负责人表示,这是航空航天领域3D打印技术应用的新里程碑。
前,除了美国外,其他一些发达国家也在积极推动增材制造技术在航空航天领域的应用。德国建立了直接制造研究中心,主要研究和推动增材制造技术在航空航天领域中结构轻量化方面的应用。澳大利亚政府于2012年启动“微型发动机增材制造技术”项目,旨在使用增材制造技术制造航空航天领域微型发动机零部件。日本政府也很重视增材制造技术的发展,通过优惠政策和大量资金鼓励产学研用紧密结合,有力促进该技术在航空航天等领域的应用。之所以会产生这一热潮,是因为金属3D打印增材制造技术对航空航天领域带来的效益是广泛的。
第一,加速新型航空航天器的研发。金属3D打印高性能增材制造技术摆脱了模具制造这一显著延长研发时间的关键技术环节,兼顾高精度、高性能、高柔性,可以快速制造结构十分复杂的金属零件,为先进航空航天器的快速研发提供了有力的技术手段。
第二,显著减轻结构重量。减轻结构重量是航空航天器最重要的技术需求,传统制造技术已经被发挥到接近极限,难以再有更大的作为。而金属3D打印高性能增材制造技术则可以在获得同样性能或更高性能的前提下,通过最优化的结构设计来显著减轻金属结构件的重量。
第三,显著节约昂贵的战略金属材料。航空航天器由于对高性能的需求,需要大量使用钛合金和镍基超合金等昂贵的高性能、难加工的金属材料。但很多零件的材料利用率非常低,一般低10%,有时甚至于仅为2%-5%。大量昂贵的金属材料变成了难以再利用的废屑,同时伴随着极大的机械加工量。作为一种高性能近净成型技术,金属3D打印高性能增材制造技术可以把高性能金属零件制造的材料利用率提高到60%-95%,甚至更高,同时也就显著减少了机械加工量。
第四,制造一些过去无法实现的功能结构,包括:最合理的应力分布结构;通过最合理的复杂内流道结构实现最理想的温度控制手段;通过合理的结构设计和材料分布实现振动频率特征的调控,避免危险的共振效应;通过多材料任意复合实现一个零件的不同部位分别满足不同的技术需求等。
第五,通过激光组合制造技术改造提升传统制造技术,使铸造、锻造和机械加工等传统制造技术手段更好地发挥作用。激光立体成型技术可以实现异质材料的高性能结合,从而可以在通过铸造、锻造和机械加工等传统技术制造出来的零件上任意添加精细结构,并且使其具有与整体制造相当的力学性能。这就可以把增材制造技术成型复杂精细结构的优势与传统制造技术高效率、低成本的优势结合起来,形成最佳的制造策略。
小结:
激光技术作为高端加工的重要手段已经得到广泛认可,事实上激光技术已经普遍应用于航空航天制造领域,在一些关键工艺领域发挥着重要作用。另一方面,自诞生以来,增材制造技术便在航空航天制造领域大显身手,其独特定制化优势,加快了航空制造研发进程。近些年,直接3D打印产品也越来越多地应用到航空航天领域,未来增材制造技术将在航空制造领域扮演更为重要的作用。
2016广州国际3D打印展览会是备受工业制造业推崇的年度盛事,将于2016年9月20-22日在广州中国进出口商品交易会展馆隆重举行,点击进行观众预登报名http://t.cn/Rt7n3KQ感受行业盛宴。